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encing, reservoir illumination can be enhanced by the incorporation 
of the down-going pressure wavefield into wave theoretic imaging, 
reflectivity inversion can be enhanced by isolating the up-going 
pressure wavefield in imaging, and overall we expect to see ‘com-
plete wavefield’ reservoir imaging and characterization solutions 
mature rapidly. Furthermore, increased focus on spatial frequency 
content courtesy of ‘wave equation inversion’ imaging solutions is 
also taking broadband seismic past the historical focus upon only 
temporal frequency content.

Isolating the seismic wavefields
Historical acquisition with hydrophone-only streamers necessitat-
ed something of a juggling act with streamer depths customized 
to the target depths and anticipated signal-to-noise content 
(Long and Buchan, 2004; Soubaras and Dowle, 2010), but this 
was overcome when dual-sensor streamer acquisition provided 
a platform that removes the receiver ghost effects in a manner 
that is independent of local receiver depth variations (Carlson 
et al., 2007; Day et al., 2013). Operationally, the availability of 
dual-sensor streamers means that the streamer depths can be 
configured with any depth profile that minimizes drag and weather 
impacts while maximizing efficiency, and does not create any 
challenges for data processing (Widmaier et al., 2015). A simple 
summation and subtraction of two measured seismic wavefields, 
pressure and the vertical component of particle velocity, yields 
two new seismic wavefields: 1. the up-going pressure wavefield 
(‘P-UP’) that has been scattered upwards from the earth without 
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Introduction
The advent of dual-sensor recording for towed seismic streamers 
enabled the true separation of the up-going and down-going 
pressure wavefields (Carlson et al., 2007), and heralded the 
‘broadband’ seismic revolution seen in marine seismic exploration 
over the past decade (Widmaier et al., 2015). In reality, ‘broadband’ 
typically means deghosting accompanied by some additional forms 
of spectral conditioning. In most cases, the post-stack interpretation 
of deghosted data is enhanced by improved geological texture, 
improved event coherence and deeper signal penetration. Recent 
attention has focused on the benefits of low frequencies in 
broadband seismic data (ten Kroode et al., 2013), and indeed where 
ultra-low frequency phase integrity is preserved as a complement 
to accurate amplitude-versus-angle fidelity, deghosted data also 
enables more accurate pre-stack quantitative interpretation (Reiser 
et al., 2015a, 2015b). However, it has also become clear that some 
long-standing imperfections in the seismic method remain. The 
rapid decay in air gun output below about 7 Hz (Parkes and Hegna, 
2011) is not satisfactorily addressed by deghosting, compensation 
for high-frequency attenuation remains a fundamental challenge, 
and traditional challenges to wavelet processing, denoise, multiple 
removal, velocity estimation and imaging may in fact be more 
complicated for some broadband methods, or unaffected for others. 
The key benefit of dual-sensor methods are accurate access to the 
various separated wavefields, in addition to enhanced recoverable 
frequency bandwidth. Reservoir monitoring is enhanced by the 
elimination of the down-going pressure wavefield from 4D differ-
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Figure 1 Schematic illustration of the up-going (‘P-
UP’) and down-going (‘P-DWN’) pressure wavefields 
that combine to yield the total pressure (‘P-TOT’) data 
recorded by hydrophone-only streamers. Note the 
dynamic sea-surface effects inescapably embedded 
within all arrival times on P-DWN (and therefore, 
P-TOT) data.
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Viscoelastic imaging has emerged in recent years as a powerful 
means to attenuate higher frequency noise during attenuation 
compensation within the migration kernel while simultaneously 
correcting for dispersion effects on pre-stack data (Valenciano et 
al., 2011; Klochikhina et al., 2016). The low frequency broadband 
seismic story is more controversial as different vendors claim 
different success with ‘deghosting’, often recovering uniform 
amplitudes down to about 2 Hz. A quick examination of Figure 2 
suggests that substantial spectral shaping must accompany deg-
hosting to achieve such an outcome.

Figure 3 shows a hydrophone-only vs. dual-sensor streamer 
comparison from the Browse Basin, Australia (Long et al., 2016). 
While the up-going pressure (P-UP) result demonstrates substan-
tial improvements in low-frequency content, particularly at the 
deeper Triassic and Jurassic levels, the low frequencies have not 
been boosted in an artificial manner such that temporal resolution 
has been compromised. Furthermore, amplitude-versus-angle 
(AVA) compliant processing was subject to careful amplitude and 
phase quality control (QC) throughout the entire flow.

Time to direct attention to the pre-stack domain
Indeed, the fidelity of dual-sensor wavefield separation becomes 
most obvious in the pre-stack domain. An often overlooked pitfall 
with aggressive multi-channel signal processing such as that applied 
to hydrophone-only streamer data is that what looks good on migrat-
ed seismic stacks (highly coherent, low frequency events) may not 
translate to pre-stack data suitable for quantitatively accurate seismic 
inversion; particularly at frequencies below about 6 Hz. As seismic 
datasets are typically delivered for basic geological mapping and 
interpretation, the implications of aggressive low-frequency signal 
processing may not be discovered for a couple of years. Reiser et 
al. (2015a,b) demonstrate that dual-sensor deep-tow seismic data 
typically contains pre-stack information with stable amplitude and 
phase behaviour down to 3 Hz. Complete wavefield solutions that 
extend this information down to 0 Hz are discussed later. Accurate 
and reliable low-frequency information enables the use of AVA 
information for elastic and reservoir property estimation, including 
lithology-fluid distribution and porosity estimates with less need 
to use any available well information for building the required low 
frequency model. In this way, seismic inversion using the up-going 
pressure pre-stack data (P-UP) offers significant opportunity to 
reliably de-risk the interpretation of prospects and decrease uncer-
tainties about the geological characteristics of assets. Furthermore, 
Du et al. (2017) demonstrate how efficient towed-streamer CSEM 
and dual-sensor seismic data can be integrated together with limited 
rock physical knowledge in a prospect area to estimate the total 
volume of hydrocarbon in place.

4D reservoir monitoring with higher repeatability
Another application where pre-stack up-going pressure data is 
demonstrably beneficial is 4D (time-lapse 3D). The collocated 
dual-sensors enable the separated up-going (P-UP) and down-going 
(P-DWN) wavefields to be independently redatumed and summed 
(re-ghosted) to emulate the total pressure wavefield (P-TOT) as 
recorded by conventional acquisition systems at any recording 
depth. One of the 4D repeatability requirements for traditional 
hydrophone-only marine streamer seismic is to be able to repeat 

interacting with the acoustic mirror of the ocean surface; and 2. 
the down-going pressure wavefield (‘P-DWN’) that is a version 
of P-UP reflected downwards from the dynamically moving 
ocean surface (Figure 1). If we sum P-UP and P-DWN we yield 
the total pressure seismic wavefield (‘P-TOT’) recorded by 
hydrophone-only streamers; heavily contaminated by ‘ghost 
notches’ and various noise related to weather and environmental 
conditions at the surface of the ocean. By isolating P-UP we can 
derive broad bandwidth, clean and high-resolution seismic images 
of the earth —without the unwanted contributions of P-DWN that 
contaminate all forms of hydrophone-only streamers.

Assumptions and shortcomings during spectral 
enhancement and recovery
Nevertheless, many signal processing-based ‘broadband seismic’ 
alternatives were subsequently developed after the launch of 
dual-sensor streamers, all using a flat sea-surface assumption, with 
each attempting to remove the ghost effects while recovering a 
frequency spectrum that meets some preconceived idealized output. 
Most broadband seismic results also incorporate spectral recovery 
solutions that primarily claim to compensate for the inescapable 
effects of anelastic attenuation and dispersion during seismic 
wavefield propagation throughout the earth. Figure 2 models 
the frequency spectra that are recovered during various stages of 
broadband signal processing, assuming that full source and receiver 
deghosting works perfectly, as does attenuation compensation. 
Note the rapid amplitude decay below about 6 Hz for all stages of 
processing that is owing to the fundamental physics of air gun arrays 
(Parkes and Hegna, 2011), and how the ‘reinforcing’ effect of the 
ghosts at mid-frequencies is reduced by deghosting. No impulsive 
source solution exists that can output significantly stronger ultra-
low frequency amplitudes than air guns. Dellinger et al. (2016) 
demonstrate how an alternative source concept using marine vibra-
tor units needs to displace significant volumes of water every cycle 
at very low frequencies, and no commercial solution is available 
today. Overall, the full deghosting and spectral recovery sequence 
in Figure 2 improves both low and high frequency content, but the 
amplitudes below about 6 Hz decay rapidly, and the high-frequency 
amplitudes shown in this simple modelling make no consideration 
for the increased noise that inevitably affects seismic data.

Figure 2 Superimposed amplitude spectra for a standard air gun array output at 
various stages of signal processing. The pale blue curve shows the recorded signal 
that is affected by both source and receiver ghost effects. The green curve shows 
the result after deghosting. The dark-blue curve shows the result after compensation 
for recording filter effects. The grey curve shows the result after compensation for 
attenuation effects: A significant benefit at higher frequencies.



SPECIAL TOPIC: ENERGY, TECHNOLOGY, SUSTAINABILITY — TIME TO OPEN A NEW CHAPTER

F I R S T  B R E A K  I  V O L U M E  3 5  I  J U N E  2 0 1 7 8 3

shows a conceptual modelling example where 4D difference results 
are derived by subtracting baseline survey data from monitor survey 
data. In both scenarios shown, the monitor survey had ‘flat’ sea con-
ditions (or alternatively, P-UP data was available for both surveys), 
but the baseline survey data was either flat or ‘rough’ (the scenario 
when P-DWN is present in one or both datasets). This simple 
example illustrates that sea-surface height variations are dynamic, 
non-repeatable, and contribute unwanted uncertainty during 4D 
differencing. Both the baseline and monitor surveys preferably have 
P-UP available and no contribution from P-DWN.

Note that the explicit measurement of the vertical component 
of particle velocity and pressure satisfy all theoretical requirements 
to pursue 3D wavefield separation in scenarios of low dip, but 
the traditional receiver sampling in the cross-line direction (the 
streamer separation) is far coarser than the inline receiver sampling 
along each streamer, so errors in how the vertical wavenumbers 

the acquisition configuration as much as possible. In particular, 
the streamer tow depth of a monitor survey is required to be the 
same as in the corresponding base survey. For dual-sensor or 
multi-component streamers, however, this tow depth requirement 
can be relaxed as the dual-sensor reconstruction process treats the 
amplitude and phase of the seismic signal correctly. Thus, dual-sen-
sor or multi-component streamers may be towed at any depth also in 
a 4D context (Widmaier et al., 2015). The tow depth may be deeper 
than what has been used for conventional 4D acquisition surveys, 
takes advantage of the quieter recording environment, and increases 
the bandwidth of the data. This fundamental benefit as well as 4D 
backward compatibility were validated in an early field trial in 2009 
(Day et al., 2010). Barros et al. (2014) demonstrate that the receiver 
ghost is not 4D friendly, and the availability of P-UP data for both 
the baseline and monitor surveys preserves the most repeatable part 
of the reservoir signal by eliminating sea-state effects. Figure 4 

Figure 3 Comparison of legacy (upper) versus dual-sensor 
broadband (lower) PSTM stacks. The transparent colour 
rendering on the right of each image shows the dominant 
frequency at each sample. Note the enhanced signal-to-
noise ratio of the low-frequency dual-sensor data.
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multiple imaging’ to enable very sparse seabed acquisition; this 
could have significant economic impact upon future OBC or OBN 
deployment as a larger area can be covered with a smaller number 
of sensors.

Assisted by improvements in the imaging condition 
(Ramos-Martinez et al., 2016) used in full waveform inversion 
(FWI), Feuilleaubois et al. (2017) present a novel quantitative 
interpretation workflow using SWIM and FWI to identify leads 
in the absence of direct well information. SWIM is shown to be 
as AVA-compliant as Kirchhoff pre-stack depth imaging, and 
improves the pre-stack amplitude analysis in the shallow water con-
text discussed. The case study also demonstrates that SWIM can be 

are estimated can occur for very steep and very shallow dips. 
Nevertheless, Day et al. (2013) provide a rigorous analysis of the 
sensitivity of 3D wavefield separation to errors/uncertainties in 
various acquisition parameters, and illustrate that the methodology 
of Carlson et al. (2007) is technically valid for all 3D wavefield 
phenomena at typical target depths and depths of interest for 
seismic investigations. The addition of cross-line sensors to 
dual-sensor seismic streamers can be motivated by geophysical 
or operational considerations. Caprioli et al. (2012) argue that the 
availability of cross-line sensor information can be used for aggres-
sive spatial interpolation between the streamers, thereby providing 
a platform for more accurate 3D wavefield separation (albeit with 
a flat sea assumption). In practice, the accuracy of interpolation 
rapidly decays away from the physical streamer locations, the 
methodology relies upon streamers being no more than 75-100 m 
apart, success is limited to the near-surface and will typically be 
band-limited — particularly when the shallow geology has large 
dips in the cross-line direction. Furthermore, additional complex 
noise modes measured by three-component streamers (Teigen et 
al., 2012) contribute to the fact that the attendant overheads when 
building such streamers are not trivial.

Combining the seismic wavefields
Separated wavefield imaging (SWIM) uses both the up-going 
(P-UP) and down-going (P-DWN) pressure wavefields to treat 
each dual-sensor receiver as a virtual source, thereby significantly 
extending subsurface illumination and seismic image quality (Lu 
et al., 2014). As modern wide-tow hydrophone-only streamer 
configurations compromise shallow target angle/offset coverage to 
the detriment of shallow gather/stack fold and event continuity, such 
data are affected by the well-known cross-line acquisition footprint, 
and are unfit for shallow velocity model building or reservoir 
characterization — particularly in shallow water environments. 
Errors in shallow velocity estimation cascade to uncertainties in 
image reconstruction and depth positioning at larger depths, thereby 
increasing drilling risk and uncertainty. In contrast, SWIM mitigates 
the acquisition footprint (Long et al., 2013), facilitates very accurate 
shallow velocity model building and imaging (Rønholt et al., 
2014), and has been extended to seafloor seismic applications (Lu 
et al., 2015). Most recently, Lecerf et al. (2017) used a permanent 
monitoring case study to demonstrate the potential of ‘high order 

Figure 4 Modelling example for 4D differencing. (Upper) comparable flat sea 
conditions for hydrophone-only surveys, or P-UP data being available for both 
surveys, (Lower) different sea conditions for hydrophone-only surveys.

Figure 5 Sigsbee2b 2D ghost-free synthetic example: 
(A) WEM image; (B) LS-WEM image; (C) F-K spectrum 
of WEM; (D) F-K spectrum of LS-WEM; (E) frequency 
spectra of WEM and LS-WEM; (F) LS-WEM objective 
function convergence rate. From Lu et al. (2017).
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ways to resolve, characterize and monitor the reservoir, and 3. The 
pursuit of subsurface information with a broader range of both 
temporal and spatial frequencies using wave theoretic imaging 
solutions that capitalize on the availability of complete wavefield 
data, enable the recovery of remarkably accurate velocity models, 
and compensate for irregularities in subsurface illumination and 
imperfect acquisition geometry.
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down-going pressure wavefields, creating new and more efficient 
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