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Motion sensor noise attenuation using deep 
learning
Bagher Farmani1*, Yash Pal1, Morten W. Pedersen1 and Edwin Hodges1 present a workflow 
consisting of deep learning noise attenuation and curvelet addback to attenuate the noise 
from motion sensor records.

Abstract
A method is proposed to attenuate both instrumental and 
environmental noise from motion sensor records in multisensor 
streamer acquisition. The main elements are two convolutional 
neural network models. The first model attenuates vertical narrow 
band high amplitude noise mainly generated by the instruments 
attached to the streamers. The second model attenuates wide-
spread background noise mainly associated with environmental 
conditions. To reduce the risk of possible signal loss an addback 
flow in the curvelet domain is used. The motivation for the work 
presented here was to develop a fully automated noise attenu-
ation method that eliminates the need for time-consuming and 
subjective user parameter testing. The method has been validated 
using seismic data from different parts of the world and shown 
to consistently produce superior results to other state-of-the-art 
noise attenuation processes.

Introduction
Multisensor streamers record pressure and particle motion using 
collocated sensors. These recordings can be combined to separate 
the wavefield into up- and down-going parts, thereby mitigating 
the effect of sea surface ghost reflections (e.g., Day et al., 2013). 
Noise attenuation remains an essential pre-conditioning step for 
optimal wavefield separation. Noise attenuation must be applied 
to data from all sensors, but the particle motion data presents par-
ticular challenges. Prior to the emergence of deep-learning-based 
algorithms, the attenuation of noise in seismic data was most 
often performed using statistical and mathematical tools. The 
most popular algorithms were developed using statistical meth-
ods for the noise detection and FX filters for the noise attenuation 
(e.g., Bekara and van der Baan, 2010; Chen and Sacchi, 2017). 
The challenge of using such algorithms is that depending on the 
level and extent of the noise, the user needs to test a number of 
parameters to ensure adequate noise attenuation without signal 
loss. Therefore, a time-consuming testing phase is required. 
Often, the degree of noise varies within a survey and the testing 
needs to be repeated. A key motivation of our work is to remove 
such subjective judgments on choice of parameters from the noise 
attenuation process. In addition, FX-based algorithms have some 
inherent limitations. For example, if the noise detection relies 

on an amplitude-based statistical method, local high amplitude 
signal could be identified as noise or spatially wide bands of 
noise identified as signal. In addition, FX filters cannot easily 
reconstruct the signal where the noise has a large lateral extent, 
and the signal-to-noise ratio is low.

In recent years, the application of machine learning tech-
nologies to seismic noise attenuation has received considerable 
interest. Such applications can be categorized into three main 
groups: quality control of the noise content and signal loss; 
detection of noise and signal loss for automatic guiding of the 
noise attenuation engine; and finally, direct noise attenuation. 
Inspired by the great success of machine learning for image clas-
sification, different machine learning methods have been used to 
classify seismic records based on their noise content (Bekara and 
Day, 2019; Farmani and Pedersen, 2020a; Walpole et al., 2020). 
Such applications are often used before noise attenuation to 
evaluate the noise content, after noise attenuation to evaluate the 
effectiveness of the noise attenuation and, sometimes, to detect 
possible signal loss. Machine learning-based noise classification 
can also be used inside the noise attenuation algorithm to perform 
the noise detection step (Farmani and Pedersen, 2020b; Farmani 
and Pedersen, 2022). Based on the noise level, type and extent, 
all samples in the seismic records are classified and passed to 
different noise attenuation processes which are not machine 
learning based. This process is ideally applied in an iterative 
fashion. Finally, more recent advances in image denoise using 
deep learning inspired our community to develop the third group 
of machine learning applications where seismic noise is directly 
attenuated using deep learning regression (Kumar et al., 2022; 
Valenciano et al. 2022).

We present a workflow that uses deep learning to directly 
attenuate the noise from motion sensor records. The heart of the 
workflow is a convolutional neural network called real image 
denoising network (RIDNet). RIDNet was originally designed 
to denoise photographic images (Anwar and Barnes, 2019). To 
make the workflow robust and generic, we use two RIDNet 
models that target different types of noise found in motion sensor 
records. Both models were trained using supervised learning and 
operate on the frequency band 19-95 Hz. FX filters are used to 
attenuate the noise at frequencies outside 19-95 Hz. We also use 
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back to the outputs of the second RIDNet model to generate the 
final output. In the following sections we explain these three 
steps in more detail.

Choice of network architecture
After initial evaluation of a suitable network for attenuating 
noise from motion sensor records, we chose RIDNet as a suitable 
candidate. To improve both runtime and quality performance we 
made some minor modifications to the original network. Figure 
2 shows the architecture of the network. RIDNet is a modular 
network comprising three main modules: feature extraction, 
feature learning residual module, and reconstruction. Feature 
extraction consists of one 2D convolution layer that extracts 
initial features. These features are then passed to a sequence of 
modules called enhancement attention modules (EAM). The first 
part of EAM branches the input features and passes them through 
two dilated 2D convolutions. Dilated convolution is similar to 
convolution but it involves sample skipping to cover a larger area 
of the input. Then features are further passed through some 2D 
convolutions and local skip connections. By using dilation and 
local skip connections the network can learn both low-frequency 
and high-frequency features in the input data. Since EAM boxes 
are connected sequentially, it is easy to find the optimum number 
of EAM boxes needed for any specific task. The output of the last 
EAM is passed to a 2D convolution layer to reconstruct the noise 
with opposite polarity. Finally, the reconstructed noise is added 
back to the input and the final output is generated.

Training the noise attenuation models
The main noise on motion sensor records can be roughly catego-
rised to two groups: noise generated by the devices attached to the 
streamer (e.g., depth and lateral control devices) and widespread 
background noise owing to the environmental conditions (e.g., 
sea state and barnacle growth). Therefore, we trained two sepa-
rate RIDNet models with identical network structure as shown in 
Figure 2 to attenuate each of these two groups of the noise. We 
call the RIDNet models ‘vertical narrow band denoise model’ and 
‘mild denoise model’. Both models were trained using supervised 
learning.

During training we randomly divided the data into 80% for 
training and 20% for validation. We tested different input sizes, 
number of convolution filters, kernel size, number of EAM 

an addback process in the curvelet domain to minimise the risk 
of signal loss when the workflow is applied to any new survey 
which might have slightly different characteristics to the data 
used for training and where these differences might cause local 
weak signal loss. The workflow has been extensively verified 
using data from a wide variety of geographical locations and has 
proved to be robust and automated. The workflow has also been 
used in full-scale production.

Noise attenuation workflow
Our workflow comprises three main steps shown in Figure 1. 
First, motion sensor records are passed into a RIDNet model 
where vertical narrow band noise with high local amplitudes 
are attenuated. Then, the output from the first RIDNet model is 
passed into another RIDNet model where the background noise 
is attenuated. To ensure no signal loss due to the noise attenu-
ation, the output of the second RIDNet model and attenuated 
energy are transformed to the curvelet domain where possible 
signal losses are recovered. The recovered signals are added 

Figure 1 Schematic of the motion sensor noise attenuation workflow.

Figure 2 Schematic of the RIDNet convolutional 
neural network architecture.
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the model progressively and effectively separates the signal from 
the noise. Figure 4 shows input, output, and attenuated noise for 
some validation tiles. The arrow in the first tile shows the traces 
with intentionally boosted amplitude. The RIDNet model learnt 
to recognise these traces as signal and kept them untouched. 
The second tile contains only signal and the RIDNet model does 
not remove any meaningful energy from the input as expected. 
The narrow band noise on the third tile is attenuated without 
any visible signal loss. The fourth tile contains both background 
noise and local high-amplitude noise. Note that the model only 
attenuates the noise where it stands out from the neighbouring 
samples. Background noise is left in the output and is targeted 
with the subsequent RIDNet mild denoise model.

We also used 300,000 tiles from selected shot gathers 
containing energy in the frequency band 19-95 Hz to train the 
RIDNet mild denoise model. The desired output of this model 
was generated by a workflow consisting of intermediate RIDNet 
models, FX filters and signal addback. The desired output was 
intentionally created to mildly attenuate the background noise 
such that signal-to-noise ratio is improved but all the noise is 
not necessarily removed. In the workflow (Figure 1), the RID-
Net mild denoise model is applied to the output of the RIDNet 
vertical narrow band denoise model. Therefore, most of the 
stronger noise associated with devices attached to the streamer 
is already attenuated in the input to this model. The task of 
this model is to reduce the background noise arising from 
environmental conditions such as barnacle noise or swell noise. 

modules, loss function, optimiser and learning rate. In the end, 
we chose an input size of 64x64 samples, 32 convolutional filters, 
kernel size of 3x3, mean absolute error loss function, 4 EAM 
modules, Adam optimiser with dynamic learning rate starting 
from 0.001. The only normalisation we use is that the maximum 
amplitude of input tiles to the models is normalised to one. 
Hence, our RIDNet models are not sensitive to the amplitude of 
the input data.

We used 600,000 tiles from selected shot gathers from a 
few selected surveys acquired in different parts of the world to 
train the vertical narrow band denoise model. The input tiles 
contained energy in the frequency band 19-95 Hz. The desired 
output for this model was generated using the hybrid workflow 
presented by Farmani and Pedersen (2022). The hybrid workflow 
uses models with U-Net architecture (Ronneberger et al. 2015) 
to automatically classify the samples and pass them to the 
appropriate noise attenuation steps. With targeted noise detection 
in the hybrid workflow, a better-targeted noise attenuation with 
appropriate levels of harshness can be achieved compared to 
statistical detection and FX filtering using a fixed threshold. To 
force the model not to mistake local high-amplitude signal with 
noise, we intentionally boosted the amplitude of signal on some 
random narrow band traces with a random ratio on both input 
and desired output. Our training could reach peak signal-to-noise 
ratio (PSNR) of 37.1 on validation data. Figure 3 shows the input, 
feature map of the output of each module, and final output for the 
trained RIDNet vertical narrow band denoise model. Note how 

Figure 3 Input, feature map of the output of each 
module, and final output for the trained RIDNet 
vertical narrow band denoise model. Note that 
the vertical narrow band noise has been correctly 
identified as such by the network.

Figure 4 Noise attenuation using the trained RIDNet 
vertical narrow band denoise model on some example 
validation tiles. Note that the network has successfully 
identified areas of vertical narrow band noise whilst 
doing almost nothing where no such noise is present.
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to create a mask (Nguyen and Liu, 2017). This mask is then used 
to select the corresponding curvelet coefficients in the energy 
removed, which are then scaled and then transformed back to the 
TX domain to provide an estimate of signal that is present in the 
attenuated energy. The residual noise in the estimated signal loss 
is further attenuated, and the remaining energy is added back to 
the output of RIDNet mild denoise model.

Figures 6a and 6b show a field data example of the input to 
and output from the two RIDNet models, respectively. The local 
signal loss estimated by the addback flow is shown in Figure 6c, 
which is added to Figure 6b to create the final noise attenuated 
output (Figure 6d). On field data it is not easy to say for sure which 
one of Figures 6b and 6d are the closest to the earth response by 
inspection of the shot gathers and the removed energy. However, 
since the energy added back by the addback flow are from the 
same curvelet coefficients as signal, signal correlations between 
the final removed and preserved energy are naturally reduced. 
Therefore, the workflow will be more signal friendly. The best 
domain for evaluating the signal loss is common midpoint stack. 
In the stack domain, the energy removed should not show any 
correlation with the energy preserved on visual inspection. We 
use this quality control (QC) product in the following examples 
to demonstrate the robustness of the workflow.

Our experience showed that, by forcing the model to perform 
only mild denoise, the risk of signal loss was greatly reduced. 
Our training could reach PSNR of 35.2 on validation data. 
Figure 5 shows input, output, and attenuated noise for some 
validation tiles. Note that the model tries to reduce the noise 
for all samples in all tiles. When the noise is stronger as in the 
second and fourth tiles, the model also attenuates more noise. 
However, the outputs of all tiles do not have a similar level of 
signal-to-noise ratio. After inference the second and fourth tiles 
are still noisier than the first and third tiles, but overall the total 
signal is preserved and variance of the noise is reduced.

Curvelet domain process for combating 
signal loss
During the extensive validation process using many datasets from 
different parts of the world, we observed very weak local signal 
leakage on two lines from different surveys. As the intention 
is to provide a workflow that is as generic and automated as 
possible, we used an addback flow to recover the signal loss if it 
happens. The inputs to the addback flow are the output from the 
RIDNet mild denoise model and the attenuated energy. First, both 
inputs are transformed into the curvelet domain. The curvelet 
coefficients with highest signal amplitude are identified and used 

Figure 5 Noise attenuation using the trained RIDNet 
mild denoise model on some validation tiles. Note that 
this network has successfully suppressed widespread 
background noise whilst preserving the signal.

Figure 6 Input to RIDNet models (a), output of the 
RIDNet models (b), signal estimated by the curvelet 
addback flow (c) and final output (d). Note that the 
energy identified by the curvelet addback flow in 
panel (c) correlates well with the initial signal estimate 
in panel (b).
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any meaningful noise where signal-to-noise ratio is high. If one 
wants to remove more noise from the naturally protected areas, 
this can be done with, for example, a simple FK filter applied 
to energy outside the signal cone. Figure 8 shows a 2D QC 
stack of part of the line contaminated by strong environmental 
noise before and after noise attenuation as well as the attenuated 
energy from the records. The noise is effectively attenuated, and 
the stack of the attenuated energy does not show any meaningful 
correlation with the signal in the noise-attenuated output.

The second example is from a survey acquired offshore 
Guinea using a multisensor streamer in 2019. The water depth for 
this survey changed from very shallow to very deep. Therefore, 
this example contains almost all possible water depths in streamer 
acquisition. Figure 9 shows input, output, and attenuated energy 
from the records. The main noise in the motion sensor records for 
this line was from the devices attached to the streamer. However, 
as acquisition of the line progressed from the shallow to the deep 
part, the level of the background noise increased on the records 
due to the gradual attachment and growth of barnacles. Therefore, 
the first input shot is noisier than the other two (Figure 9a). As 
mentioned previously, our workflow applies mild background 
noise attenuation. Hence, the first output shot is still noisier than 
the other two output shots after noise attenuation (Figure 9b) but 
much cleaner than the input shot. The level of remaining noise 
was considered acceptable. Note also how strong signals are 

Examples
The first data example is from the Outer Moray Firth survey 
acquired using a multisensor streamer northeast of Aberdeen in 
2018. The water depth in the survey area was between 80 m and 
140 m. In seismic streamer acquisition, such water depths are 
considered shallow. Attenuating noise from shallow water data 
has been always proved challenging in the past. Due to the shal-
low seabed, water bottom reflections and refractions as well as 
their short period multiples usually contain high amplitude energy 
with high moveout. Traditional algorithms such as FX filters 
usually rely on thresholding to detect the noise in the application 
window. It is obvious that there is a high risk that high amplitude 
energy with high moveout will be erroneously identified as noise 
if thresholding methods are used. To avoid this, geophysicists 
usually design a protection area around the water bottom and 
its short period multiples where different noise attenuation 
techniques or parameters are used. This is a manual process that is 
time-consuming and subjective, especially in cases where energy 
from adjacent shots is present in the same record. Figure 7 shows 
some shot gathers before and after noise attenuation with the 
proposed workflow. The workflow was able to remove almost all 
the noise from the shot gathers. The attenuated energy is shown in 
Figure 7c. Note how the RIDNet models have learnt to naturally 
protect the areas with high-amplitude signal around the water bot-
tom and its short period multiples. The workflow does not remove 

Figure 7 Example motion sensor shot gathers from 
field data acquired offshore Scotland: input (a), output 
(b) and attenuated energy (c) using the proposed 
noise attenuation workflow. The displays have a 
20-25 Hz Ormsby lowcut filter to reflect the typical 
bandwidth for which motion sensor data are used in 
wavefield separation.

Figure 8 Motion sensor 2D QC stack: input (a), output 
(b) and attenuated energies (c) using the proposed 
noise attenuation workflow. The displays have 
20-25 Hz Ormsby lowcut filter to reflect the typical 
bandwidth for which motion sensor data are used in 
wavefield separation.
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phase that is needed for conventional noise attenuation approaches 
has been eliminated. Compared to the original RIDNet and many 
other convolutional neural network architectures used for seismic 
noise attenuation, our final RIDNet architecture has fewer param-
eters and, therefore, uses less hardware resources for inference. 
The workflow was recently used for a full survey production. Our 
experience so far shows that the proposed workflow can attenuate 
more noise from the motion sensor records than what could be 
achieved with the previous workflows and at the same time it has 
a better signal preservation without any user interaction.
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