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third-party processed, or subjective. Therefore, in isolation, a 
single model provides little useful evidence of the reliability of 
any individual model, or the seismic data.

In this study we describe the use of a Monte Carlo simulation, 
enabling multiple realizations of the solution in order to derive 
estimates of the uncertainty of an individual model. The method 
performs multiple random perturbations of the starting model 
followed by tomographic inversion. In this exercise the starting 
model is a final velocity model built during a seismic processing 
project. A resulting solution model population is then selected 
based on analysis of the volumetric residual move-out; all models 
exhibit a similar level of residual move-out as the starting model. 
This set of realizations is then used to derive a model population 
variance attribute. It is also used for error envelope analysis at 
key targets, giving an indication of the spatial reliability of the 
seismic data.

We then introduce two forms of automation associated with 
the Monte Carlo simulation. Both reduce project turnaround. 
The first is a feed-back loop to constrain the size of the model 
population used in the simulation. This mechanization defines 
a threshold of what is an appropriate sample set size, and can 
reduce the turnaround of the model uncertainty project by 
understanding where extra data provides no extra information. 
The second example is enabled through a modification to the 
workflow, what nowadays is referred to as a ‘hack’. Rather than 
look at the uncertainty of a single model and image project, we 
create a depth imaging velocity model from scratch using either a 
benign or incorrect starting point through the same Monte Carlo 
simulation of the model space. The results show an effective 
solution, achieved with more than an order of magnitude saving 
in turnaround.

Method
Model uncertainty workflows
Most velocity model building practices use some variant of 
an inversion scheme, whether velocity tomography, which is 
based on observed data recovered from an initial pre-stack depth 
migration, or Full Waveform Inversion (FWI), which attempts to 
minimize the residual of a modelled data set and an acquired one. 
The tomographic approach comprises the following three steps, 
illustrated in Figure 1:
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Introduction
While some efforts have been made to quantify structural 
uncertainty on seismic images (Osypov et al., 2011; Letki et al., 
2013), the seismic data processing industry has found it chal-
lenging to measure the effectiveness of processing algorithms 
on seismic data. Understanding the success of a single algorithm 
may be time consuming, require significant work, including 
research and development, and is therefore also costly. Despite 
this, the demand for ‘error bars’ on processes is growing, while 
expectations are that projects should be completed faster. At 
the same time seismic projects are getting bigger. It is not 
uncommon to see projects recording up to 20,000,000,000,000 
samples. For now, each project will typically have 15 to 20 
major processing components, which are managed by interme-
diate data outputs, each having unique characteristics. More 
than any other industry, the seismic acquisition and processing 
companies should be at the forefront of big data analysis. 
However, there has been little progress from the industry in 
advanced analytics or artificial intelligence, and there has been 
no major effort in companies metamorphosing from geophysics 
to geophysical data science. Therefore, the innovation must 
come from within, by the geophysicists who use processing 
workflows on a daily basis. Modifications and manipulations 
to established systems enable advanced analytics, reductions in 
turnaround and the opportunity to provide confidence levels on 
output data volumes.

An example of where this can be demonstrated is building 
depth imaging velocity models. A model is used to provide an 
image of the subsurface, from which a range of probabilities 
and volumetric estimates may be made, drilling campaigns 
planned and then actioned. Seismic data underpins all of this, 
and the data’s spatial veracity is dependent on the model used 
to reposition the data, but the entire acquisition and processing 
flow is refined into one single model representation. Although 
other factors are important, the seismic processing project and its 
deliverables are all about the earth model.

While there is one ‘true’ answer, many models will give an 
equally acceptable solution based on the method used to derive 
the model, its convergence criteria and measures defining the 
success of the resulting model. The model can be verified, or even 
constrained by auxiliary data, but in most cases this data is sparse, 
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variables that may affect the outcome of a tomographic inversion. 
These can be defined by two broad groups: how accurate are 
the measures or residuals we use to constrain the inversion, and 
how the tomographic inversion is parameterized? The first is 
dependent on the data, while the second is defined by how we 
want to sample the subsurface for the inversion.

To understand the impact of the variables for any given 
data set, we apply a perturbation to the model and compute 
the observed data from the invariants. The inversion is then 
run and the updated model recovered. Subsequent analysis is 
then performed to judge how well the inversion has recovered 
the reference model, given the data constraints implied by the 
residual observations.

We use this procedure to derive a simple model sensitivity 
check. We apply a checkerboard perturbation (P) to the reference 
model (Mmig) yielding model (Mo), perform a subsequent 
inversion and then analyse the difference (dP) between the initial 
and the final inversion (Minv) model to identify how well the 
perturbation has been recovered. This is summarized below:

Mmig + P = Mo → invert → Minv – Mmig = dP

The closer dP is to zero the better the tomography has succeeded 
in recovering the reference model. We can use dP as an indication 
of the ability of the data to constrain the model. By varying both 
the magnitude and wavenumber of the perturbations we can 
determine the number of tomographic iterations to perform and 
the smoothing parameters to consider within a particular update.

In Figure 2 we see a cartoon representation of this approach. 
We observe that the inversion has resolved the wavelength and 
magnitude of the perturbation, which in turn provides information 

1.  Pick the residuals, which will then be used in the subsequent 
tomographic inversion to establish the misfit cost function. 
These are usually some form of residual depth error with 
respect to offset or angle measured in Common Image Gath-
ers (CIGs) generated by the initial migration.

2.  Ray-traced demigration of these residuals is then performed 
using the migration model, creating observed data which are 
independent of a particular migration model. This ‘invariant’ 
data may be subsequently remigrated by ray-tracing per-
formed in an initial inversion to create ‘observable’ data for 
tomography.

3.  The final phase performs the linear inversion to update the 
model parameters by minimizing the cost function based on 
the observed data.

In step 2 the demigration and remigration removes the dependen-
cy of the initial residual observation on the migration model. This 
permits the last two steps of the process to form a mechanism that 
allows for numerous linear inversions. Each successive inversion 
recovers greater magnitude updates which overall can diverge 
from a linear update trend (Guillaume et al., 2008).

In the model uncertainty workflow, we use a Monte Carlo 
approach to generate a population of equiprobable outcomes prior 
to statistically understanding the behaviour of the products (Bell 
et al., 2016). In the case of velocity model building, we build a 
population of models that all equally explain the data, then we 
derive statistics that tell us about the variability of the models, prior 
to extracting information about the confidence one can have in the 
image associated with the traditional single model approach.

The method uses randomization to build the model popula-
tion. However, this must be based on an understanding of the 

Figure 1 Schematic showing a standard tomographic 
loop.
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to select the subset of solution models for further statistical 
analysis. Given the earlier analysis that optimizes the model 
population, the proportion of excluded models is small.

The tomographic inversion platform uses a beam migration 
to establish the initial ray kinematics of the invariant data, which 
comprise wavelets extracted from the data through a multi-di-
mensional dip scanning process (Sherwood et al., 2008). This 
is performed within the migration model space generating the 
observed data. The process of model perturbation is performed in 
a residual migration. This applies the differential kinematic to the 
observed data consistent with the applied perturbation. The use of 
this approach is outlined in Figure 4, and enables the resolution of 
the model population in an accelerated timeframe, precluding the 
need to wait months for the results.

Once the acceptable solution model population is defined, we 
generate statistical attributes to constrain the uncertainty associated 
with the target model. The mean, variance and standard deviation 
parameters are computed from the population for each parameter 

on the mechanism that will create our randomly perturbed 
equiprobable model population. In practice we use a sequence of 
automatically derived quantitative metrics that define thresholds 
for the suitability of the perturbations applied. This is done prior 
to their use in the creation of a randomly generated model set. 
Our first step fulfils our requirement to understand the sources of 
uncertainty prior to a full Monte Carlo simulation.

Once the useable minimum spatial wavenumbers and max-
imum amplitude thresholds are established, the information is 
used to generate measures of the statistical reliability of the 
starting model. The underlying assumption is that all solution 
models in the population fit the data. Firstly, we generate a pop-
ulation of perturbed models that we apply to the starting model. 
After subsequent inversions we recover the solution models (see 
Figure 3). Secondly, migrations are performed for all the solution 
models and volumetric move-out attributes are generated from 
the resulting CIGs. We classify the realizations based on this 
residual move-out error, by using cumulative move-out functions 

Figure 2 Cartoon describing the checkerboard 
perturbation process used to determine how the data 
supports the wavelength and resolution tests.

Figure 3 Schematic flow showing the perturbation 
and inversion process defining the simulation.



SPECIAL TOPIC: EMBRACING CHANGE - CREATIVITY FOR THE FUTURE 

6 0 F I R S T  B R E A K  I  V O L U M E  3 7  I  J U N E  2 0 1 9

in x, y and z shows a complex geological setting affected by 
a salt diapir. The overburden contains a sequence of localized 
fault blocks set in a shallow water environment. Deeper thick 
chalk is pierced by salt, which has then receded. Pre-chalk 
data contains structurally complex and poorly illuminated  
reflectivity.

Figure 6 shows the same data with model uncertainty 
attributes overlain and co-rendered. The variance of the 120 
models used for the population is co-rendered on the inline and 
crossline sections, and shows that the majority of variation in 
the model population is within the chalk interval, especially in 
small gentle synclinal structures in the lee of the salt intrusions. 

cell. The population of model realizations are used to explain 
positioning errors associated with a particular event. We create a 
Gaussian envelope mask based on the wavelength of the reflection 
coda about a specific event of interest. This mask is then applied to 
the migrated stacks generated from the model population. Using a 
sequence of cross-correlations we construct a mean vertical posi-
tion, along with error envelopes defined by the standard deviation 
of the lags, modified to accommodate local dip deviations.

Model uncertainty – field example
A field example is demonstrated in Figure 5. The data is from 
the Central Graben in the North Sea. The intersection of data 

Figure 4 Schematic showing the hyperTomo engine 
used for the Monte Carlo simulation.

Figure 5 Inline, crossline and depth slice intersection 
showing the CGR data set’s subsurface complexity.
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Automation one – reducing turnaround in model 
uncertainty
In the example shown in Figures 5, 6 and 7, 120 models were used 
to determine the model metrics (variance) and the spatial reliability 
indicators (depth deviation). As previously described, these models 
are created randomly, and are constrained by an understanding 
of how the data supports the model. The analysis is derived from 
the migrated data that result from the 120 models. The total 
number of volumes created through the process to create the 
metrics is in excess of 2000 volumes, half of which are pre-stack. 
Resolving hundreds of models tomographically prior to imaging, 
high-grading the results, and performing statistical analysis is a 
time consuming process, even when using a ‘super-fast’ inversion 
and migration scheme, and dedicated computing resources. It 
may not be necessary. Understanding when, for a given data set, 
we determine an appropriate model sample set that accurately 
describes an ideal model population, could save time by reducing 
the number of models needed to generate meaningful statistics.

Thick chalk is challenging for tomography, as the extraction 
of residual measurements from the data are controlled by 
reflectivity and data diversity; both of which are limited in  
chalk.

The depth deviation map for the Base Cretaceous Uncon-
formity (BCU), which sits in the pre-chalk section, is also shown 
in Figure 6. There is a strong correlation of depth deviation on 
the BCU directly below the areas of high variance in the model 
population. An illumination map (Figure 7) for the BCU also 
illustrates that in the lee of the receded salt there is an illumina-
tion ‘hole’. We can build a story about where the single model 
and image uncertainty exists in this data, based on the statistical 
attributes that come from the Monte Carlo simulation. Poor 
illumination and challenging geology lead to localized areas of 
poorly constrained tomography. This is defined by large variance 
in the model population. Confidence in the structural positioning 
in the image may be weaker beneath thick chalk synclines, where 
salt diapirs pierce the overburden.

Figure 6 CGR data with model uncertainty attributes. 
Inline and crossline sections show the co-rendered 
model population variance, which shows biggest 
variations in the chalk. Depth deviation is shown for 
the Base Cretaceous Unconformity, whose largest 
errors are correlated with the areas of biggest model 
variance.

Figure 7 CGR data with illumination shown for 
the Base Cretaceous Unconformity. The zone of 
blue (poor illumination) correlates with the depth 
deviation in Figure 6.
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models, and then the group containing 60 models and 120 models. 
Both figures show that at 60 models the amount of meaningful 
information achieved by adding more data does not necessarily 
result in more relevant statistics. In this example, 60 or 70 models 
would appear to be appropriate, based on the method used to create 
the model population. The total energy in the CDF representation 
does not increase, and the mean model does not change. The imple-
mentation of this automation through a feedback loop could have 
saved time for both the workflows and outcomes of the simulation.

Using a statistical feedback loop of the variance in the running 
model population mean and deviation, we can determine, in 
real-time, when both of these statistics start to stabilize globally. 
Running analysis of Cumulative Distribution Functions (CDFs) of 
blocks of models show, for this example, that progressive addition 
of models slowly decreases the relative energy in the CDFs, 
which in turn adds little to the statistical relevance of the outcome. 
Figure 8 shows a graphical representation of the running statistical 
analysis, while Figure 9 shows the mean of the first group of ten 

Figure 8 Statistical analysis of Cumulative Distribution 
Functions (CDFs) for both running differences (red) 
and differences with the initial model (blue). Both 
converge to show no change in relative energy after 
60 models are used (blue arrow).

Figure 9 a) Mean model of the models 1-10, b) Mean 
model of the models 1-60, c) Mean model from the 
models 1-120. Little difference can be seen in b and c.

Figure 10 Common Image Gathers; a) Final 
tomographic model (project); b) Initial model (for a); 
c) modified and locally erroneous initial model.
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a zero residual for tomographic inversion. This is quantified 
by determining move-out related metrics after each pass of the 
simulation. We map the progressive convergence of the solution 
using these metrics.

The results from the second automation process were run 
on a 500 km2 data set from West Africa. The test was performed 
to reduce the time taken to produce a model by removing any 
intervention. Two initial models were tested; the starting model 
used for the actual tomographic model building project, and one 
where the initial model was modified to incorporate a locally 
varying error of up to 10% in the starting model. Once randomly 
perturbed, the secondary starting model could be locally up to 
15% too fast or slow. The results were checked against the final 
tomographic model which was built using the same data, and 
generated in 90 days.

Figure 10 shows three sets of CIGs, where Figure 10b is 
the initial model used for the full tomographic model building, 
and Figure 10c is the modified version, which is locally 10% 
different to Figure 10b. Figure 10a is the result of the 90 day 
model building exercise. Figure 11a is the same as 10a, while 
Figures 11b and 11c show the results from the automated Monte 
Carlo model building process for starting points 10b and 10c 
respectively. CIGs in Figure 11a, 11b and 11c all have a similar 
level of move-out. Progressive analysis of metrics on move-out 
show an equivalent level of convergence in the resulting models 
irrespective of the starting point (Figure 14). Figures 12 and 13 
show the same sequence with velocity models co-rendered on the 
vertical seismic stack section. The models that result from the 

Automation two – reducing turnaround in velocity 
model building
Determining design features from one process to apply in another 
way for a different process is the cornerstone of reverse engineer-
ing. When generating analytical information from the model uncer-
tainty flow, we are attempting to provide confidence level metrics 
of a velocity model. We have previously referred to this as a final 
velocity model, or the starting model for the uncertainty analysis. 
Equally, it could also be used to check the reliability of a velocity 
model building exercise, if it is being built in a layered approach. 
However, if we modify the workflows using some simple changes, 
can we generate a usable velocity model using the same underlying 
Monte Carlo simulation criteria, rather than provide statics on a 
final one? How close does the starting model need to be to the 
ideal final one? Are there implications if the model is significantly 
wrong? Would this type of automation without testing, QC and 
manual intervention help to reduce turnaround? Would the result be 
equivalent to a ‘normal’ velocity model building exercise?

The starting point for the full automation of velocity model 
building begins with the same steps of determining what the 
data supports in the model space prior to creating a randomly 
generated model population. Once generated, the population 
is tomographically inverted. Rather than trying to understand 
whether we remove the perturbation applied to the initial 
model, we simply perform a statistical analysis on the resulting 
model updates prior to reintroducing a pass of random model 
generation. The process is repeated with the goal to produce a 
model that explains the data, by producing flat CIGs which have 

Figure 12 Migrated stacks with co-rendered velocities; 
a) Final tomographic model (project); b) Initial model 
(for a); c) modified and locally erroneous initial model.

Figure 11 Common Image Gathers; a) Final 
tomographic model (project); b) Final automated 
model starting with 10b; c) Final automated model 
starting with 10c.
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deliverables, and project turnaround is assumed to be decreasing. 
We have introduced a method that provides both data reliability 
metrics and automation for depth imaging velocity model build-
ing. Using a randomly generated model population, created after 
understanding the constraints on the model by the data, we derive 
statistics that can be used to mitigate risk by providing ‘error 
bars’ on the spatial reliability of a typical single model and image 
project.

Modifications to the same workflow enable the creation of 
an automated depth imaging velocity model building scheme. 
Depending on the data, the method has shown that the starting 
model may not be critical, and turnaround can be reduced by 
greater than an order of magnitude over traditional methods, 
while producing near-equivalent results. Additional automation 
steps have been identified within the workflows which, when 
used in conjunction with the products of continuing work in 
learning algorithms, will enable further reductions in turnaround 
for this critical step in a processing project. Automation in 
seismic processing is looming on the horizon, but is the industry 
ready to embrace change?
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automated model build (Figures 13b and 13c) are very similar 
to each other, and closely resemble the model built in 90 days 
(Figure 12a and 13a), which used a hybrid-layered approach with 
local high velocity channels benefiting from geobody interpreta-
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The automated approaches to building a velocity model 
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workflows were initiated by a geophysicist who had no prior 
knowledge of the data or models. No well constraints were avail-
able to confirm the accuracy of any of the resulting models. The 
implications of this approach are considerable. While the original 
model building project took 90 days, both automated models 
were achieved in less than an order of magnitude of that time. 
Additional nuanced automation steps have been devised to further 
reduce the turnaround, the aim being to create an automated 
model in days rather than months.

Conclusions
Data sets in seismic acquisition and processing are getting 
larger. Expectations are growing for confidence levels on seismic 

Figure 13 Migrated stacks with co-rendered 
velocities; a) Final tomographic model (project); b) 
Final automated model starting with 12b; c) Final 
automated model starting with 12c. Orange arrow 
(12a) shows the location of the geobody masked 
and update channel. Blue arrow shows the channels 
capture with the automated approach.

Figure 14 Move-out convergence criteria quality 
control. Blue curve using starting model shown in 
Figures 10b and 12b, Orange curve using starting 
model shown in Figures 10c and 12c. Both blue and 
orange curves converge to the same level of move-
out.
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