
F I R S T  B R E A K  I  V O L U M E  4 1  I  D E C E M B E R  2 0 2 3 5 7

SPECIAL TOPIC: DATA MANAGEMENT AND PROCESSING

1 PGS
* Corresponding author, E-mail: julien.oukili@pgs.com

DOI: 10.3997/1365-2397.fb2023101

Large-scale industrial deployment of machine 
learning workflows for seismic data processing
Julien Oukili1*, Jyoti Kumar1, Jon Burren1, Steve Cochran1, Martin Bubner1, Denis Nasyrov1 and 
Bagher Farmani1 discuss the benefits of implementing deep neural networks for certain steps 
of seismic data processing on data examples from around the world.

Introduction
Seismic data processing is often thought of as a non-determin-
istic journey where signals are incrementally separated from 
noise, with the inherent challenge of the noise being, in a lot of 
cases, distinctly different and separable from the signal but in 
some cases remarkably similar and difficult to distinguish. At 
the numerous steps of data preparation, migration and post-pro-
cessing, the opportunities to improve quality are many, and so 
are the risks of harming the desired signal. Even evaluating the 
results remains a challenge, especially in the early steps of an 
imaging flow. Machine learning (ML) applications have caught 
the interest of many, with the desire for faster and more thor-
ough quality control (QC), more reliable processes, or simply to 
automate some of the more mundane and highly repetitive tasks 
of the geophysicists working on increasingly larger amounts 
of data. At the same time, the accelerated energy transition has 
put increased pressure on geophysicists to get the most out of 
each seismic dataset which are often used for multi-purpose 
subsurface investigations (e.g., both oil and gas exploration and 
carbon storage screening).

In recent years many case studies have demonstrated the 
potential of ML methods for processing, QC and interpretation 
of seismic datasets. However, often these have come with 
caveats about the use of the results, especially if the actual 
data being processed significantly differs from those used 
for training the ML algorithm. In this paper, we look at two 
different types of machine learning use cases where the neural 
network workflows have been deployed to many marine seismic 
processing projects, at large scale, and with special attention 
given to the challenge of highly varying data characteristics, 
geological and geographical environments. The application 
examples are focused on problems where signal and noise 
separation were critical, either for robustness of subsequent 
processing steps or for the quality of direct interpretation  
efforts.

Conventional data processing flows broadly follow a strat-
egy of 1) parameter testing, often on a very limited subset of 
data, 2) production set up on the full dataset, and 3) QC, which 
potentially reveals the needs to change or even rerun current 
processing steps with different parameterisation. Often the final 

parametrisation choice represents a compromise that is reached 
after a considerable amount of time has been spent on trying to 
optimise the said processing steps on a limited assessment of 
the data.

Using ML methods has allowed us to speed-up specific pro-
cessing steps and has allowed the geophysicists to concentrate 
on improving the resulting data quality rather than spending 
time on optimising processes and parameters.

We are sharing some of our main learnings from routinely 
using ML methods in a number of specific applications scenar-
ios over the last two years.

Use case 1 – Noise removal in raw data prior to 
wavelet processing
The first use case focuses on the very early stage of seismic 
data processing: denoising of raw recorded data. Applying 
sufficient denoise prior to the first multi-channel processes is 
crucial to avoid spreading noise or enhancing it, making noise 
more apparent to desired signal and difficult to remove. Noise 
characteristics can also vary greatly between seismic surveys, 
as well as within surveys, sail lines, individual shot records and 
between the different types of recording sensors in the case of 
multi-sensor acquisition systems.

Pressure and particle motion data from multi-sensor stream-
er acquisition can be combined to separate the wavefield into 
up- and down-going components (Carlson et al., 2007). To 
guarantee the generation of high-quality up-going and down- 
going wavefields, the noise from both records must be attenu-
ated before the data are combined. ML tools have increasingly 
become the method of choice in a drive to increase automation 
and improve output consistency.

Farmani et al. (2023) presented specific workflows for pres-
sure and particle motion data that employ deep learning to sup-
press the noise in the records efficiently. Real image denoising 
network (RIDNet), a convolutional neural network, sits at the 
core of the proposed workflows. The method, presented here, 
uses a single RIDNet model with a specific structure for both 
pressure and particle motion recordings, as opposed to machine 
learning-based workflows presented by Farmani and Pedersen 
(2020a; 2020b; and 2022), that attenuate incoherent noise in 
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the acquisition, some sail lines contained significant noise. Shot 
gathers from one of the noisy sail lines are shown in Figure 1. 
The top image displays the results of applying machine learning 
denoise to the pressure dataset using the RIDNet methodology. 
It is evident that noise has been efficiently attenuated, and the 
difference plots demonstrate that there has been no primary 
leakage during the process. The outcome of the particle motion 
dataset is shown in the middle image. Finally, the bottom row 
shows the upgoing wavefield generated through the wavefield 
separation process using pressure and particle motion input after 
ML denoising, as expected, without receiver ghost interference 
and without artifacts.

A second example is shown in Figure 2. This dataset was 
acquired in 2023 as part of multi-client campaign offshore 
Malaysia. Again, a triple-source configuration was used and 
12 9000m-long multi-sensor streamers separated by 112.5 m. 
As observed in the previous example, the machine learning 
denoise workflow effectively attenuates the noise in pressure 
as well as particle motion datasets, which in turn manage to 
produce a high-quality upgoing wavefield. Even if minor resid-
ual noise can still be observed, it has not deteriorated through 

the bandwidth where most of the noise exists. As a result, the 
core components of the processes are greatly streamlined and 
strikingly comparable for the two types of sensor recordings. 
A network built on the RIDNet architecture is used to attenuate 
incoherent noise on pressure and particle motion records within 
the bandwidth of interest. Additional processing techniques can 
be used to attenuate noise that is present outside of the RIDNet 
application bandwidth.

The approach presented has been successfully applied to 
numerous datasets worldwide with high consistency and higher 
efficiency and has enabled us to produce denoised data for both 
pressure and particle motion sensors very quickly after the data 
have been acquired offshore.

Successful noise attenuation using RIDNet 
applications
The first field data example is from a 2023 seismic survey, part 
of multi-client campaign in the Eastern Mediterranean Sea, 
offshore Egypt. The data were acquired using a triple-source 
configuration and 12 10,000m-long multi-sensor streamers 
separated by 150 m. Although the sea was generally calm during 

Figure 1 Shot gather from deep-water Eastern 
Mediterranean, offshore Egypt: RIDNet application on 
hydrophone data (top), particle motion sensor data 
(middle) and wavefield separation step (bottom). The 
raw hydrophone data are contaminated with towing 
noise (linear events at near offsets, left side) and turn 
noise at far offset (right side). The particle motion 
data have a 10 Hz low cut filter and initially shows 
visible noise towards the far offsets. The denoise was 
very stable in high- and low signal-to-noise areas. 
Furthermore, the difference of the particle motion 
data shows noise being removed at near offsets 
where signal and noise seem equally strong in 
amplitudes as well.
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A similar RIDNet workflow based on a lighter network, 
more focused on signal and noise classifications, is currently 
being trialled to identify residual noise which might require 
further attention and investigation. Design work is continuing 
that should allow us to graphically visualise the results of this 
new residual noise detection workflow so that geophysicists can 
make quick and informed decisions.

Use case 2 — Noise attenuation in the post-
migration image domain
In the following section we shift our attention from raw data 
denoise to the late stages of a standard seismic data processing 
flow, post-migration image denoise, where the starting assump-
tion is fundamentally different from the previous application 
since the desired signal is expected to be already in focus (i.e., 
adequately imaged).

Seismic images are often contaminated by migration noise, 
sometimes referred to as migration smiles, swings, artifacts or 
defects. This noise is generated when assumptions made by the 
migration algorithm begin to break down, e.g., the midpoint, 
offset and azimuth sampling requirements of the input data are 

the wavefield separation process and hence can be dealt with 
effectively at a later stage.

The final example is from a dataset acquired in 2015 
using also multi-sensor streamers in the Faroes Shetland 
Basin, offshore UK. This survey was acquired using a dual-
source configuration and 10 7050m-long cables separated 
by 100 m. The data were reprocessed in 2023 as part of a 
regional multi-client rejuvenation project. Machine learning 
denoise once more worked admirably for both the pressure 
and particle motion datasets (Figure 3), demonstrating that 
even older datasets can benefit from the new denoising  
technology.

The machine learning denoise workflow described in these 
use-case examples has shown good and robust performance in 
attenuating common noise on datasets from all around the world 
and enabled generation of high-quality separated wavefields. 
And since the presented method using RIDNet is largely 
automated it only took a few days on each project to set up the 
respective wavefield separation workflow and apply it to several 
thousand square kilometres reliably despite the high variations 
in input data characteristics.

Figure 2 Shot gather from shallow water Sarawak, 
offshore Malaysia: RIDNet application on hydrophone 
data (top), particle motion sensor data (middle) 
and wavefield separation (bottom). Compared to 
the examples on Figure 1, the raw hydrophone data 
show more towing noise at far offsets (right side) and 
spurious noisy traces. The particle motion data show 
more noise in the form of vertical stripes, likely to be 
caused by more active birds (instruments which steer 
the streamers).
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removing or reducing migration noise, suggesting the training 
data were sufficiently representative.

Application scenario 1 — Structural Imaging and 
post-migration clean-up
A field data example from offshore Newfoundland demonstrates 
the ability of the neural network to attenuate noise on the 
migrated section, making the image more easily interpretable and 
improving the structural picture (Figure 4).

A second field data example from offshore Norway (Fig-
ure 5) represents a more challenging scenario where some of the 
migration noise, especially from the Top Chalk reflection, does 
interfere with shallower structures of similar dips in heavily 
faulted formations. In this application example the CNN noise 
removal had to be limited to a horizon-bound interval and 
was complemented by structurally conformable filtering. This 
resulted in a considerable improvement in signal-to-noise ratio 
without detrimental image distortion. We postulate that more 
traditional denoise tools would have failed in preserving the 
smaller details if they had been designed to achieve a similar 
noise reduction.

not adequate (Long et al., 2006). The assumptions may break 
locally when the seismic wavefield propagates through complex 
media or is exposed to strong amplitude (reflectivity) contrasts. 
Data regularisation and filtering of aliased energy prior to 
migration can mitigate effects of the sampling challenges (e.g., 
Schonewille 2000; Chemingui and Biondi, 2002). The effects 
of under-sampled field data can be further compounded by 
subsurface complexity.

Preserving the amplitudes accurately is a key objective of 
any imaging exercise and care needs to be taken not to alter 
amplitudes in any noise removal process especially at the 
post-migration stage. Traditionally, applying any noise removal 
post migration has taken a lot of time and effort.

Klochikhina et al. (2021) described a machine learning 
method for tackling this problem. In their paper they demonstrate 
how a convolutional neural network (CNN) with U-net architec-
ture was trained using synthetic data examples and the results 
demonstrated on some field data examples.

This ML-based denoise technique has now been widely 
adopted and applied to a wide range of different datasets as part 
of commercial imaging projects. It has proved very effective in 

Figure 3 Shot gather from Faroe Shetland Basin, 
offshore United Kingdom: RIDNet application on 
hydrophone data (top), particle motion sensor data 
(middle) and wavefield separation (bottom). Very 
strong noise is present in the raw hydrophone data, 
as well as weaker linear noise, both well attenuated 
through the denoise, which reveals a lot of signal. 
The amplitudes of the noise on the particle motion 
data are also higher than in the examples of Figure 
1 and 2.
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Application scenario 2 — Supporting 
quantitative interpretation (QI) work
In a further example (Figure 6) we illustrate how the CNN 
denoising capabilities positively impact on QI workflow. The 
signal-to-noise ratio of the data influences the stability of any 
attributes derived from the data, so a typical QI workflow 
necessitates the inclusion of steps to precondition the pre-stack 
and stack-domain data to address unwanted noise. This can 
be a time-consuming process, depending on the quality of the 
input data. Including the neural network in the data preparation 
workflow provides the required noise suppression, to the benefit 
of the QI attribute derivation. Figure 6 shows the impact on the 
AVA gradient attribute; the level of noise is clearly reduced while 
the signal continuity is maintained. Considerable uplift is also 
seen on the relative P-wave impedance attribute computed from 
the same data.

Application scenario 3 — High-end imaging 
using least squares migration workflows
Incorporating the same neural network methodology into high-
end imaging workflows has helped overcome challenges with 
the migration noise frequently observed in least-squares migra-
tion (LSM) results. LSM solutions can be divided into two 
main categories: data-domain and image-domain solutions. Both 
approaches are powerful techniques for overcoming challenges 
with subsurface illumination and image blurring and ensure 
more reliable amplitude preservation in the imaging process, 

Figure 4 Migrated section before (top) and after (bottom) application of the neural 
network. The migration artifacts are more prominent above strong interfaces and 
could be in the worst case interpreted as faults.

Figure 5 Migrated cross-section (left 
column) and time slice (right column), 
before (top row) and after (middle row) 
targeted image denoise and difference 
(bottom row). Contrary to the example 
of Figure 4, the migration artifacts above 
the Top Chalk (blue arrow) are not easily 
distinguished from the shallower complex 
geology. However, the artifacts have a more 
distinct lineation pattern on time slices 
which is taken just above the Top Chalk. 
Features which are parallel to the noise 
pattern on time slices have been  
well preserved.
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therefore appropriate data preconditioning and regularisation (as 
part of the inversion) is critical for this methodology.

The example from the Campos Basin, Brazil (Figure 7) 
shows the results of an image-domain LSM. The inclusion of 
the neural network-based denoise in the least-squares workflow 
has ensured that the enhanced image is not contaminated by 
migration noise.

Some takeaways for post-processing of seismic 
images
The application examples above illustrate the potential of an 
uplift in image quality that benefits the subsequent processing 
and use of the data. An equally important consideration is the 
time needed to address the migration noise; using the neural 
network significantly reduces the preparation time compared 
to more traditional denoise methods. The user is considerably 
less encumbered with testing parameters and tuning workflows 
using the neural network, freeing time which can be spent giving 
greater attention to more advanced geophysical processes and 
analysis of QI attributes extracted from the data.

Use case 3 — Diffraction event detection
In the pre-migration domain, diffraction events, sometimes 
referred to as ‘tails’, exhibit similar characteristics to the 
‘migration smile’ artifacts discussed earlier, albeit in a downward 
dipping fashion. Building on the similarity of these two artifact 
types, the same CNN U-net architecture as featured in use case 2 
above was used but with an inverted time axis (i.e., free surface 
pointing downward on seismic traces). Contrary to the earlier 
example, here the diffraction ‘noise’ is actually desired signal, 
which can be re-inserted into the migration process to produce a 
sharper image of small-scale heterogeneities.

In Figure 8, a near-offset volume is taken through migration 
before and after the diffraction identification and separation. The 
same migration algorithm and velocity models were used, so the 
images are fully consistent, although one may argue that focusing 
diffraction tails would require further attention. As expected, the 
separation is not perfect, as reflection leakage can be observed 

important for AVA studies. Data-domain solutions have a lot in 
common with full waveform inversion (FWI), involving forward 
modelling, followed by comparison between modelled and 
observed data and the back-propagation of residuals, resulting in 
the estimation of reflectivity instead of velocity. This approach to 
LSM can prove computationally expensive, especially for higher 
frequencies.

Image-domain LSM solutions derive and apply corrections 
to a conventional migration. If the signal-to-noise ratio of the 
conventional migration is poor, the LSM result will be noisy, 

Figure 6 Left side: AVA gradient attribute calculated 
on data before (top) and after (below) migration noise 
attenuation applied to angle-stacks, using the neural 
network. Right side: relative Ip attribute calculated on 
data before (top) and after (below) migration noise 
attenuation applied to angle-stacks, using the neural 
network.

Figure 7 Raw migration (top) showing clear evidence of migration noise. The output 
of the least-squares migration workflow (bottom), incorporating the neural network, 
shows improved horizontal and vertical resolution with minimal contamination from 
the migration noise on the raw migration.
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patterns and occasionally isolated objects. The benefits of such 
an approach are significant when the diffraction generators are 
located close to reflections of similar or higher amplitudes. 
Furthermore, the separation, although not perfect, does not seem 
to suffer from amplitude footprint effects and can resolve details 
down to the scale of the imaging bin size.

The method presented here is now being tested on various 
datasets to aid detailed interpretation for both deep and shallow 
targets, and using conventional as well as high-resolution and 
ultra high-resolution 3D seismic data (with approximately 1 m x 
1m bin size and 0.25 ms temporal sampling).

It is still early days, but so far the machine learning CNN 
U-net-based workflow has robustly worked for any type of 3D 
seismic data and any type of frequency bandwidth that it was 
applied to.

Conclusions
We have discussed several use cases of ML methods in data 
processing steps which are always required on any type of 
seismic data nowadays. The examples shown have proven our 
implementations to be reliable for a large variety of datasets, 
nearly irrespective of the region of origin and of the geophys-
ical and geological settings. The ML workflows have either 
replaced complete steps or been integrated with other tools to 
achieve at the very least the same quality as before, but most 
often better.

Running machine learning workflows can be compute inten-
sive. However, access to cloud computing has all but removed 
any computational limits and enabled large-scale deployment of 
ML technology. The main benefit of employing machine learning 
technology is that it has allowed us to free up valuable time of 
the project geophysicists by shifting more of the denoising effort 
to the computer. This has more broadly allowed the processors 
to spend time on QC and quality improvements, leading to better 
project outcomes.

The methods described in this paper incorporate a significant 
amount of automation. However, the role of geophysicist 
remains crucial, in selecting the appropriate flows, defining the 

in the diffraction products. However, the features highlighted by 
the new image now appear much stronger than the background 
geology, especially towards the top of the section where highly 
reflective horizon events were masking smaller details.

While the section views are very useful for understanding 
large fault patterns, we find the diffraction images to be rather 
chaotic and still noisy for small-scale features. Looking at 
time slices of the same migration volume (Figure 9) reveals 

Figure 8 Near offset volume from shallow water 
offshore Newfoundland and Labrador, Canada: 
conventional imaging (top) versus diffraction imaging 
(bottom). The workflow successfully identified both 
large- and small-scale diffraction patterns, though 
some weak reflection leakage can be seen. The 
separation is most impressive towards the shallow 
(top of the images) where strong reflections were 
masking weaker diffraction tails.

Figure 9 Slices through the diffraction image volume: seabed (top) and 1368 ms 
under seabed (bottom). Glacial features are dominating the seabed image except 
towards the left side of the image: the water bottom goes rapidly deeper and is 
therefore practically free of iceberg marks. The deeper image shows both a large 
network of sub-parallel faults as well as small scale polygonal faulting in the lower 
left side of the image.
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https://doi.org/10.1190/1.1512803
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Multisensor Noise Attenuation Guided by Deep Learning. 83rd EAGE 
Annual Conference & Exhibition, Jun 2022, Volume 2022, p.1-5.
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2023, Volume 2023, p.1-5
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[2020]. Leveraging Deep Learning For Seismic Image Denoising. 
First Break, 38(7), 41-48.

Klochikhina, E., Crawley, S., and Chemingui, N. [2021]. Seismic image 
denoising with convolution neural network., First International 
Meeting for Applied Geoscience & Energy
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[2006]. Multi-Azimuth and Wide-Azimuth lessons for better seismic 
imaging in complex settings. SEG 76th Annual Meeting, New Orleans.

Schonewille, M.A. [2000]. Fourier reconstruction of irregularly sampled 
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application range, adding adequate complementary processes, or 
simply discarding the results in parts of a dataset. It is important 
that using ML technology does not amount to black box 
processing and that the application user remains in full control. 
A natural question to ask is how far we can progress towards a 
fully automated data processing workflow and how quickly and 
whether experienced geophysicists will be replaced by machines 
(Brittan et al., 2021).

We believe that we are still a long way away from fully 
automated seismic data processing and that with the continued 
changes to the type and characteristics of the data we record and 
the constant evolution of high-fidelity final imaging products, 
geophysicists will continue to play a critical role in executing 
successful imaging projects. We have demonstrated in this paper 
that in specific areas of data processing, fully industrial and 
dependable implementations of ML technology can ultimately 
benefit both data providers and data recipients.
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