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Summary 

 

Velocity model building (VMB) is among the most 

important problems is exploration geophysics, and it 

remains a challenge in many areas. An accurate, high 

resolution earth model is important for good quality images 

and accurate interpretation, particularly for reservoir 

characterization. 

We introduce a deep learning workflow that uses Fourier 

neural operators (FNOs) to estimate corrections to velocity 

models from migrated images. The workflow is akin to 

traditional migration velocity analysis (MVA), but it uses a 

neural network in place of a back projection operator. It can 

iteratively make high-resolution refinements to an incorrect 

velocity model.   

 

Introduction 

 

There has been significant interest in recent years in using 

deep learning-based algorithms to estimate high-resolution 

velocity models directly from shot gathers (Araya-Polo et al, 

2018; Wang et al, 2018; Shibayama et al., 2021).  

Alternatively, Farris et al (2018) use shot gathers to estimate 

background velocity models intended as input to FWI.  

Many of these approaches use convolutional neural network 

(CNN) architectures, which use local convolutional 

operators. FNOs were introduced as a machine learning 

method for solving partial differential equations (Li, et al., 

2021).  They use global convolutions, efficiently computed 

with FFTs, rather than local operators typically used by 

convolution neural networks (CNNs).  FNOs are regarded as 

being more able to represent non-linear, non-local operators 

than CNNs, and are mesh independent (so there is some 

flexibility to perform inference on a grid that differs from 

training).  Yang et al. (2021), Konuk and Shragge (2021) and 

Li et al. (2022) used them to solve the acoustic wave 

equation, and Huang et al. (2023) used them to estimate 

velocities from input shot gathers. 

 

One of the important details in generalizing neural networks 

from synthetic training data to field data is noise.  Neural 

networks tend to perform poorly when their training data 

don’t have the features that inference input data do.  Park et 

al. (2023), Takemoto et al. (2019), and others use neural 

style transfer to make their training data more realistic in 

terms of noise content.  Besides noise, different field data 

sets will have different, irregular acquisition geometries, 

which should also be covered by training data sets (or else, 

some regularizing process should be employed).   

 

In this paper, we present a method using Fourier neural 

operators to do migration velocity analysis.  Rather than go 

straight from field shot gathers to velocity, we first migrate 

the data and produce angle gathers.  FNOs are a natural fit 

for an ML-based MVA because the effects of an error in a 

migration velocity model are generally seen elsewhere in the 

migrated image, not at the location of the error itself.   

 

Migration regularizes and filters the data, hopefully closing 

the gap between training data and field data.  Additionally, 

migrated data already occupies the same domain as the target 

velocity model (plus some kind of angle/extended image 

axis).  An easier problem which should result in an easier 

network to train.  Gather-based migration velocity analysis 

may be somewhat limited where velocity models are 

complex, but can still be valuable by relatively quickly 

estimating a velocity than will take fewer iterations of FWI 

to finalize. 

 

First, we briefly describe the adapted FNO architecture used 

and the general workflow to generate synthetic datasets used 

for the training step. Then, we demonstrate the performance 

of our approach on the synthetic datasets allocated for the 

validation stage. Finally, we show a successful inference 

from field data acquired with multi-sensor technology in 

Newfoundland, Canada. 

 

Method 

The original architecture introduced by Li et al. (2021) is 

modified in its macro design as shown in Figure 1b.  

Convolutional layers were introduced between the integral 

operator blocks. Another change from the original 

architecture in the micro design was in the switch to 

Gaussian error linear unit (GELUS) functions as activation 

functions. Lara-Benitez et al. (2023) present the 

mathematical proof of a similar architecture used to solve the 

Helmholtz equation.    

To train the network, we first generated 10k synthetic 

surveys using randomly generated background velocity 

models, and density models based on Hamilton’s and 

Gardner’s relations. We then added randomly shaped 

geobodies to the models to simulate salt. We modeled the 

data with an absorbing surface condition, so they don’t 

contain multiples. We then added errors of various sorts and 

magnitudes to each background velocity model omitting the 

salt bodies entirely.  Then migrated the synthetic surveys 

using the resulting incorrect velocity models, producing 

gathers.   

 

We then trained an FNO-based network to find the correct 

velocity, given the initial model and migrated gathers as 

input (Figure 2). Each input sample was a set of migrated 
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gathers and a velocity model, and each target sample was an 

updated velocity model.  

 

Naturally, a single model can be incorrect in many different 

ways. Any number of different salt bodies (including none) 

can be added to a given background velocity. Additionally, 

testing a trained model produces a (sometimes slightly, 

sometimes rather severely) incorrect estimate of the velocity, 

especially when complex salt bodies are included.  Each of 

these tests can also become future training samples. So 

hypothetically we have an endless supply of training 

samples. Figure 3 shows an example of a test sample not 

seen by the network during initial training. A large salt body, 

missing from the migration velocity model, causes large 

errors in the initial migration and a poor stacked image. The 

model is not fully recovered in one pass through the neural 

network, but the resulting model is much closer to the correct 

one, and the image is much better. Additionally, the more 

subtle remaining velocity error forms part of the next 

generation of training data. 

 

The trained network can naturally be used iteratively.  Given 

a set of migrated gathers, the trained network produces a new 

velocity model.  The updated model can then be used to 

produce a fresh set of migrated gathers, and so on (Figure 2). 

Gather-based MVA has its limits, especially when velocities 

are very complex, but potentially this workflow can provide 

a relatively inexpensive means to reduce the amount of work 

left for FWI to do. 

 

Field data inference 

 

We tested the trained network on a portion of a field survey 

which was acquired offshore Newfoundland, Canada, using 

multi-sensor streamer technology. The maximum inline 

offset is about 8.1 km.  Standard pre-processing is applied to 

the data, including multiple suppression.  The data were 

migrated (with a wavelet and frequency band similar to the 

original synthetic training data) to generate input gathers for 

the trained network and remigrated a few times after 

subsequent model updates.   

 

The initial model, and the model after three iterations, are 

shown in Figure 4.  The initial model is converted from a 

time migration model.  It is very smooth and not very 

accurate, judging from the residual moveout, which is 

ubiquitous and strong.  After three iterations of migration 

and update, the model is much more detailed and the gathers 

flatter.  The updates were masked in the water column at 

each iteration. 

 

Conclusions 

 

We introduce a novel approach to estimate high-resolution 

velocity models from migrated gathers using Fourier neural 

operators. In contrast with deep-learning algorithms that 

estimate velocity directly from shot gathers, our approach 

takes advantage of the fact that migrated data and velocity 

models share the same domain. This facilitates 

generalization from training with synthetic data to field data 

inferences.  Moreover, the extended domain (e.g., angle) 

provides a natural lifting, which contains extra physical 

information that eventually improve the robustness of the 

estimation of velocities. We demonstrate the effectiveness of 

our approach on field data acquired in offshore Canada. This 

approach might be an alternative approach to FWI or in 

complex cases (e.g., salt settings) a provider of a good 

starting model for FWI. 

 

 

 

 

Figure 1: Migration velocity analysis (MVA) loop (a), with velocity 

update performed by a trained FNO-based neural network (b), rather 
than back projection of picked residual moveouts, or similar 

traditional gather-based MVA operations.  The macro design (b) of 

the network is adapted by the addition of convolution blocks 
between integral operator blocks. 
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Figure 2: During training, erroneous velocity models and resulting gathers are input, with correct velocity models as the targets

 

 

Figure 3: Evaluation sample not included in training.  Initial velocity (a) and gathers (b) are inputs to the network.  The stack (c) is for illustration.  

The trained network produces model estimate (d).  Migration with the estimated model produces much improved (though still not perfect) gathers 

(e) and stack (f), included for comparison.  Model (d) and gathers (e) may become part of additional training. 
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Figure 4: Field data test.  Starting model (a), zoomed portion of initial migrated gathers (b), and stack (c); updated model after 3 iterations (d), and 

corresponding zoomed gathers (e) and stack (f). Arrows indicate layers and faults that appear better focused after the update. 

 

 

 

 


