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SUMMARY 

 

We propose a deep-learning strategy based on Fourier neural 

operators (FNOs) for estimating velocity models from field 

shot gathers with minimal pre-preprocessing. In contrast 

with conventional CNN-based architectures based on local 

operators, FNOs are global convolutional operators 

efficiently computed in the Fourier domain. We show the 

advantages of using global FNOs over conventional 

convolutional neural networks (CNN), to achieve a better 

non-linear mapping between the recorded data and the 

subsurface velocity. We show that FNOs can be used to 

automate velocity model building from field data with 

minimal preprocessing, as demonstrated by successful 

inferences on data acquired with multi-sensor technology in 

offshore Canada.    

 

IINTRODUCTION 

Full automation of the velocity model building (VMB) 

process has been one of the main goals in exploration 

geophysics. The challenge is to construct high-resolution 

velocity fields with the minimal pre-processing of the data. 

Full waveform inversion (FWI) technology has evolved 

toward this goal by, for example, introducing objective 

functions capable of minimizing cycle skipping produced by 

inaccurate initial models. Although with some limitations, 

these approaches can relax the constraint of kinematically 

accurate initial models and consequently reduce the 

turnaround time of the VMB workflow. Likewise, there is in 

increasing interest in developing deep learning-based 

algorithms to estimate high resolution velocity fields directly 

from the shot gathers (Araya-Polo et al, 2018; Wang et al, 

2018; Shibayama et al., 2021), and to provide accurate initial 

background velocity models to input to FWI (e.g., Farris et 

al., 2018). In general, one of the common features of such 

approaches is the use of convolutional neural networks 

(CNN) architectures, which use local convolutional 

operators. 

 

On the other hand, Fourier neural operators (FNO) were 

introduced as surrogates of numerical methods to solve 

partial differential equations (PDE’s) (Li et al., 2021). In 

seismic wave propagation, for example, Yang et al. (2021), 

Konuk and Shragge (2021) and Li et al. (2022) used them to 

solve the acoustic wave equation. One of main advantages 

of such operators is that they efficiently compute global 

convolutional operators. In addition, they are mesh 

independent, i.e., the training can be performed in coarser 

grids than those used in the inferences (Li et al., 2021). In 

this work, we use an adapted FNO architecture to perform 

the highly non-linear mapping from recorded shot gathers to 

subsurface earth acoustic velocity. We use synthetic datasets 

computed on thousands of velocity and density models. 

These synthetics are the input to the adapted FNO 

architecture for determining the optimal neural operator 

parameters that will be used in the inference phase. 

 

First, we describe the adaptations to the macro and micro 

design of the FNO architecture. Then we describe the 

characteristics of the earth models and their respective 

synthetic data used in the training. Finally, we show a 

successful application of the trained FNO operator to 

perform inferences on field data with minimal 

preprocessing.   

 

METHOD 

The original architecture introduced by Li et al. (2021) is 

modified in its macro design as shown in Figure 1a. First, it 

was adapted for mapping consistently the different domains 

in which the input and output data are defined: shot gathers 

defined in the space-time domain, and the velocity fields 

defined in the space domain.  In addition, convolutional 

layers between the integral operator blocks were introduced. 

One change in the micro design (Figure 1b) from the original 

architecture was in the type of activation functions used. In 

this adapted architecture, we utilized gaussian error linear 

unit (GELUS) functions.  Lara-Benitez et al. (2023) present 

the mathematical proof of a similar architecture used to solve 

the Helmholtz equation.    

The first step of our FNO-based VMB workflow consists of 

generating about 40,000 random velocity models. We build 

the corresponding density models using Hamilton and 

Gardner relations. The earth models are stratigraphic layers 

with different shapes, thicknesses and different velocity and 

density contrasts. To consider shallow- and deep-water 

scenarios, a variety of water-bottom depths and bathymetries 

are considered. We simulate 10 shots for each model using 

the pseudo analytical method to solve the acoustic wave 

equation (Ramos-Martinez et al, 2011). In Figure 2, we show 

sample velocity models and their corresponding simulated 

shot gathers. A standard streamer survey geometry with a 

maximum offset of 8 km was considered. A zero-phase 

source wavelet with frequencies between 3 and 13 Hz was 

used in the simulations, which include free surface effects. 

The direct arrival is removed from the gathers.  From the full 

dataset, we use 38,000 earth models and their corresponding 

shot gathers for training and the other 2000 datasets for the 

validation stage, which is the second step in the workflow.  

In Figure 3, we show the performance of the trained operator 

during the validation stage for the synthetic datasets not used 
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in the training. As observed, a smoothed version of the true 

model is well recovered. To validate our results, we compute 

the structural similarity index, which is displayed in the 

inferred models. Moreover, we compute RTM angle gathers 

from the inferred models. As observed, the flatness of the 

image gathers is almost perfect through all depths. 

 

FIELD DATA INFERENCE 

The third step in our workflow is the inference on field data. 

In the example shown here, we use data acquired with multi-

sensor technology in offshore Canada with a maximum 

inline offset of 8.1 km. Minimal pre-processing to the field 

data is applied. This consists of direct arrival removal, 

conversion to zero phase, denoising and filtering in the same 

frequency bandwidth of the synthetic data used in the 

training.  No multiple attenuation is performed in the data. 

We show sample shot gathers in Figure 4. Individual 

inferences for 10 adjacent shots are performed. Then, these 

individual inferences were merged to construct the velocity 

model shown in Figure 4.  

We validate the results by performing RTM imaging. Figure 

5 shows the migrated image that clearly reveals structural 

features such as the systems of faults above and below the 

unconformity. Likewise, image gathers are flat throughout 

the image. This velocity model also can be used as an input 

for FWI. 

 

CONCLUSIONS 

We described a deep-learning VMB workflow that uses an 

adapted architecture based on FNO operators. We trained 

our deep learning model using synthetic data representing 

various geologic scenarios, and inferences were 

subsequently derived from field shot gathers with minimal 

preprocessing in nearly real time.  We demonstrated the 

power of using these global operators for successfully 

mapping recorded shot gathers to a subsurface velocity 

model on field data acquired in offshore Canada. The 

inferred macro velocity model is accurate enough to be used 

for imaging or for FWI. Velocity model inferred from field 

data was independently validated through RTM imaging. 

This workflow can lead to a significant reduction in the 

turnaround time of imaging projects.   
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Figure1. a) Macro and b) micro design of the Fourier neural operator architecture used in this work. 
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Figure 2. Sample velocity models and their corresponding shot gathers generated for the training stage. 

 

 

 

 

 
Figure 3. Synthetic data inference: true (left column) and inferred (central column) velocity models from the trained Fourier 

neural operator. Structural similarity index measure (SSIM) and RTM angle gathers (right column) were used for QC the inferred 

models. 
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Figure 4. Offshore Canada field data inference: Sample shot records with minimal pre-processing (top panel) are the input to the 

adapted FNO trained operator. The output is the inferred velocity field (bottom panel).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Offshore Canada field data example: RTM image stack (top panel) and angle gathers (bottom panel) computed from the 

inferred velocity displayed in Figure 4. 


